79 research outputs found

    No Go Theorem for Self Tuning Solutions With Gauss-Bonnet Terms

    Full text link
    We consider self tuning solutions for a brane embedded in an anti de Sitter spacetime. We include the higher derivative Gauss-Bonnet terms in the action and study singularity free solutions with finite effective Newton's constant. Using the methods of Csaki et al, we prove that such solutions, when exist, always require a fine tuning among the brane parameters. We then present a new method of analysis in which the qualitative features of the solutions can be seen easily without obtaining the solutions explicitly. Also, the origin of the fine tuning is transparent in this method.Comment: 17 pages, 3 figure

    Slow-roll Inflation with the Gauss-Bonnet and Chern-Simons Corrections

    Full text link
    We study slow-roll inflation with the Gauss-Bonnet and Chern-Simons corrections. We obtain general formulas for the observables: spectral indices, tensor-to-scalar ratio and circular polarization of gravitational waves. The Gauss-Bonnet term violates the consistency relation r = -8n_T. Particularly, blue spectrum n_T > 0 and scale invariant spectrum |8n_T|/r << 1 of tensor modes are possible. These cases require the Gauss-Bonnet coupling function of \xi _{,\phi } \sim 10^8/M_{Pl}. We use examples to show new-inflation-type potential with 10M_{Pl} symmetry breaking scale and potential with flat region in \phi \gtrsim 10M_{Pl} lead to observationally consistent blue and scale invariant spectra, respectively. Hence, these interesting cases can actually be realized. The Chern-Simons term produce circularly polarized tensor modes. We show an observation of these signals supports existence of the Chern-Simons coupling function of \omega _{,\phi } \sim 10^8/M_{Pl}. Thus, with future observations, we can fix or constrain the value of these coupling functions, at the CMB scale.Comment: 21 pages, 5 figure

    BPS pp-wave brane cosmological solutions in string theory

    Full text link
    We construct time dependent BPS pp-wave brane solutions in the context of M-theory and type II supergravity. It is found that N-brane solutions we considered satisfy the crossing rule as S-brane solutions but 1/8 supersymmetry remains. By applying them to the cosmological setting, inflationary solutions are obtained. During this inflation, the size of the extradimensions becomes smaller than our four-dimensional spacetime dynamically. We also discuss the mechanism for terminating this inflation and recovering the hot big-bang universe.Comment: 10 page

    Gauss-Bonnet Black Holes in dS Spaces

    Full text link
    We study the thermodynamic properties associated with black hole horizon and cosmological horizon for the Gauss-Bonnet solution in de Sitter space. When the Gauss-Bonnet coefficient is positive, a locally stable small black hole appears in the case of spacetime dimension d=5d=5, the stable small black hole disappears and the Gauss-Bonnet black hole is always unstable quantum mechanically when d≥6d \ge 6. On the other hand, the cosmological horizon is found always locally stable independent of the spacetime dimension. But the solution is not globally preferred, instead the pure de Sitter space is globally preferred. When the Gauss-Bonnet coefficient is negative, there is a constraint on the value of the coefficient, beyond which the gravity theory is not well defined. As a result, there is not only an upper bound on the size of black hole horizon radius at which the black hole horizon and cosmological horizon coincide with each other, but also a lower bound depending on the Gauss-Bonnet coefficient and spacetime dimension. Within the physical phase space, the black hole horizon is always thermodynamically unstable and the cosmological horizon is always stable, further, as the case of the positive coefficient, the pure de Sitter space is still globally preferred. This result is consistent with the argument that the pure de Sitter space corresponds to an UV fixed point of dual field theory.Comment: Rextex, 17 pages including 8 eps figures, v2: minor changes, to appear in PRD, v3: references adde

    Thermodynamic and gravitational instability on hyperbolic spaces

    Get PDF
    We study the properties of anti--de Sitter black holes with a Gauss-Bonnet term for various horizon topologies (k=0, \pm 1) and for various dimensions, with emphasis on the less well understood k=-1 solution. We find that the zero temperature (and zero energy density) extremal states are the local minima of the energy for AdS black holes with hyperbolic event horizons. The hyperbolic AdS black hole may be stable thermodynamically if the background is defined by an extremal solution and the extremal entropy is non-negative. We also investigate the gravitational stability of AdS spacetimes of dimensions D>4 against linear perturbations and find that the extremal states are still the local minima of the energy. For a spherically symmetric AdS black hole solution, the gravitational potential is positive and bounded, with or without the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS space), is found useful to keep the potential bounded from below, as required for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps figure

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR

    Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant

    Full text link
    We compute the dimensionality dependence of η/s\eta/s for charged black branes with Gauss-Bonnet correction. We find that both causality and stability constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in the infinite dimensionality limit. We further show that higher dimensionality stabilize the gravitational perturbation. The stabilization of the perturbation in higher dimensional space-time is a straightforward consequence of the Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio

    Warped Phenomenology of Higher-Derivative Gravity

    Full text link
    We examine the phenomenological implications at colliders for the existence of higher-derivative gravity terms as extensions to the Randall-Sundrum model. Such terms are expected to arise on rather general grounds, e.g., from string theory. In 5-d, if we demand that the theory be unitary and ghost free, these new contributions to the bulk action are uniquely of the Gauss-Bonnet form. We demonstrate that the usual expectations for the production cross section and detailed properties of graviton Kaluza-Klein resonances and TeV-scale black holes can be substantially altered by existence of these additional contributions. It is shown that measurements at future colliders will be highly sensitive to the presence of such terms.Comment: 29 pages, 8 figure

    Unified description of the dynamics of quintessential scalar fields

    Full text link
    Using the dynamical system approach, we describe the general dynamics of cosmological scalar fields in terms of critical points and heteroclinic lines. It is found that critical points describe the initial and final states of the scalar field dynamics, but that heteroclinic lines which give a more complete description of the evolution in between the critical points. In particular, the heteroclinic line that departs from the (saddle) critical point of perfect fluid-domination is the representative path in phase space of quintessence fields that may be viable dark energy candidates. We also discuss the attractor properties of the heteroclinic lines, and their importance for the description of thawing and freezing fields.Comment: Minor changes to the text and two new figures, main conclusions unchanged. 12 pages, 11 figures, uses RevTe

    On the thin-shell limit of branes in the presence of Gauss-Bonnet interactions

    Full text link
    In this paper we study thick-shell braneworld models in the presence of a Gauss-Bonnet term. We discuss the peculiarities of the attainment of the thin-shell limit in this case and compare them with the same situation in Einstein gravity. We describe the two simplest families of thick-brane models (parametrized by the shell thickness) one can think of. In the thin-shell limit, one family is characterized by the constancy of its internal density profile (a simple structure for the matter sector) and the other by the constancy of its internal curvature scalar (a simple structure for the geometric sector). We find that these two families are actually equivalent in Einstein gravity and that the presence of the Gauss-Bonnet term breaks this equivalence. In the second case, a shell will always keep some non-trivial internal structure, either on the matter or on the geometric sectors, even in the thin-shell limit.Comment: 17 pages, 2 figures, RevTeX 4. Revised version accepted for publication in Physical Review
    • …
    corecore